10 research outputs found

    Salve Regina University Act on Climate: Strategic Plan for the University to Reach State Carbon Neutrality Goals

    Get PDF
    In order to become more sustainable and meet the mandate set by the 2021 Rhode Island Act on Climate law (RI General Law §42-6.2), Salve Regina University must work to reach net-zero greenhouse gas emissions by the year 2050. Action to meet these standards begins now and must be continually built upon to ensure that Salve Regina University, as leader in Rhode Island, is always working for a more sustainable future. Throughout the Spring 2022 semester, students of the BIO-140: Humans and Their Environment course instructed by Dr. Jameson Chace have researched ways in which Salve Regina can begin on the path to zero greenhouse gas emissions today. By focusing on change in the areas of energy, transportation, food, financial investments, and sequestration, Salve Regina can reduce the greenhouse gas emissions of today for a more sustainable tomorrow. Recommendations are broken into three time periods. Action for today to achieve by 2030 include improving energy efficiency, installing the first electric vehicle (EV) parking/charging stations, increasing carbon sequestration, reducing beef in the campus diet, and assessing the carbon impact of university financial holdings. Actions to be initiated soon and to be achieved by 2040 include shifting away from natural gas heating when system renewals take place, increasing EV parking to meet rising demand, during turnover replace current university vehicles with electric or hybrid, continuing with sequestration efforts on campus, begin phasing out high carbon diet items, and by 2040 the university investment portfolio should be carbon neutral. If carbon neutrality can be reached by 2050 the most challenging aspects of campus life that need to change will require planning now and thoughtful implementation. The class in 2022 envisions a campus in 2050 where solar lights illuminate campus and buildings through the night, all university vehicles and most faculty and staff vehicles are electric and are found charging during the day at solar powered charging stations, dining services in Miley supports community agriculture and includes incentives for meatless and low carbon meal plans, the university has become a leader in low carbon/green market investing demonstrating how careful planning can reap high returns, and carbon sequestration on campus grounds has maximized such that off campus carbon offsets are established with local land trusts to complete the carbon neutrality goals. In doing so no only will the university be recognized as a state-wide leader in climate action, but will also be a global leader in working towards a world that is more harmonious, just, and merciful.https://digitalcommons.salve.edu/bio140_arboretum/1033/thumbnail.jp

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Salve Regina University Act on Climate: Strategic Plan for the University to Reach State Carbon Neutrality Goals

    Get PDF
    In order to become more sustainable and meet the mandate set by the 2021 Rhode Island Act on Climate law (RI General Law §42-6.2), Salve Regina University must work to reach net-zero greenhouse gas emissions by the year 2050. Action to meet these standards begins now and must be continually built upon to ensure that Salve Regina University, as leader in Rhode Island, is always working for a more sustainable future. Throughout the Spring 2022 semester, students of the BIO-140: Humans and Their Environment course instructed by Dr. Jameson Chace have researched ways in which Salve Regina can begin on the path to zero greenhouse gas emissions today. By focusing on change in the areas of energy, transportation, food, financial investments, and sequestration, Salve Regina can reduce the greenhouse gas emissions of today for a more sustainable tomorrow. Recommendations are broken into three time periods. Action for today to achieve by 2030 include improving energy efficiency, installing the first electric vehicle (EV) parking/charging stations, increasing carbon sequestration, reducing beef in the campus diet, and assessing the carbon impact of university financial holdings. Actions to be initiated soon and to be achieved by 2040 include shifting away from natural gas heating when system renewals take place, increasing EV parking to meet rising demand, during turnover replace current university vehicles with electric or hybrid, continuing with sequestration efforts on campus, begin phasing out high carbon diet items, and by 2040 the university investment portfolio should be carbon neutral. If carbon neutrality can be reached by 2050 the most challenging aspects of campus life that need to change will require planning now and thoughtful implementation. The class in 2022 envisions a campus in 2050 where solar lights illuminate campus and buildings through the night, all university vehicles and most faculty and staff vehicles are electric and are found charging during the day at solar powered charging stations, dinning services in Miley supports community agriculture and includes incentives for meatless and low carbon meal plans, the university has become a leader in low carbon/green market investing demonstrating how careful planning can reap high returns, and carbon sequestration on campus grounds has maximized such that off campus carbon offsets are established with local land trusts to complete the carbon neutrality goals. In doing so no only will the university be recognized as a state-wide leader in climate action, but will also be a global leader in working towards a world that is more harmonious, just, and merciful

    Salve Regina University Act on Climate: Strategic Plan for the University to Reach State Carbon Neutrality Goals

    No full text
    In order to become more sustainable and meet the mandate set by the 2021 Rhode Island Act on Climate law (RI General Law §42-6.2), Salve Regina University must work to reach net-zero greenhouse gas emissions by the year 2050. Action to meet these standards begins now and must be continually built upon to ensure that Salve Regina University, as leader in Rhode Island, is always working for a more sustainable future. Throughout the Spring 2022 semester, students of the BIO-140: Humans and Their Environment course instructed by Dr. Jameson Chace have researched ways in which Salve Regina can begin on the path to zero greenhouse gas emissions today. By focusing on change in the areas of energy, transportation, food, financial investments, and sequestration, Salve Regina can reduce the greenhouse gas emissions of today for a more sustainable tomorrow. Recommendations are broken into three time periods. Action for today to achieve by 2030 include improving energy efficiency, installing the first electric vehicle (EV) parking/charging stations, increasing carbon sequestration, reducing beef in the campus diet, and assessing the carbon impact of university financial holdings. Actions to be initiated soon and to be achieved by 2040 include shifting away from natural gas heating when system renewals take place, increasing EV parking to meet rising demand, during turnover replace current university vehicles with electric or hybrid, continuing with sequestration efforts on campus, begin phasing out high carbon diet items, and by 2040 the university investment portfolio should be carbon neutral. If carbon neutrality can be reached by 2050 the most challenging aspects of campus life that need to change will require planning now and thoughtful implementation. The class in 2022 envisions a campus in 2050 where solar lights illuminate campus and buildings through the night, all university vehicles and most faculty and staff vehicles are electric and are found charging during the day at solar powered charging stations, dinning services in Miley supports community agriculture and includes incentives for meatless and low carbon meal plans, the university has become a leader in low carbon/green market investing demonstrating how careful planning can reap high returns, and carbon sequestration on campus grounds has maximized such that off campus carbon offsets are established with local land trusts to complete the carbon neutrality goals. In doing so no only will the university be recognized as a state-wide leader in climate action, but will also be a global leader in working towards a world that is more harmonious, just, and merciful

    The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer?

    Get PDF
    The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER/EGFR ligands. The released ligands activate HER/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy (vol 33, pg 110, 2019)

    No full text

    Preoperative risk factors for conversion from laparoscopic to open cholecystectomy: a validated risk score derived from a prospective U.K. database of 8820 patients

    No full text
    corecore